鄭剛教授:低密度脂蛋白累積暴露假說的相關證據(上篇)

動脈粥樣硬化性心血管疾病(ASCVD)是全球發病和死亡的主要原[1]。動脈粥樣硬化是由動脈壁內攜帶膽固醇的低密度脂蛋白(LDL)和其他含載脂蛋白B(APOB)的脂蛋白的漸進沉積引起的[2-8]。隨著時間的推移,越來越多的LDL顆粒被沉積在動脈壁內,由此產生的動脈粥樣硬化斑塊負荷會逐漸增加,發生ASCVD事件的風險也會增加[2-11]。因此,LDL和其他含APOB的脂蛋白對ASCVD的生物學效應取決於暴露的程度和持續時間[10-11]。隨著時間的推移,保持低水平的LDL膽固醇(LDL-C),可減少被沉積在動脈壁內的致動脈粥樣硬化脂蛋白的數量,減緩動脈粥樣硬化的進展,並大大降低急性ASCVD事件的終生風險[12-18]
事實上,在降低LDL-C水平以預防動脈粥樣硬化事件方面,一種共識正在形成,即“越低越好,越早越好”。儘管這一共識正在形成,但減少LDL的終生累積暴露以減緩動脈粥樣硬化的進展並不是目前預防ASCVD的重點。然而,過去5年的兩項科學進展首次使我們能夠透過減少LDL-C的累積暴露來制定預防ASCVD的實用建議。首先,開發和批准了能夠大幅持續降低LDL-C水平的新療法,透過保持低水平的LDL-C來減緩動脈粥樣硬化進展,從而預防ASCVD事件[19]。其次,已經開發出編碼生物因果關係的新型深度學習和機器學習演算法,以準確估計從任何年齡開始並持續到任何時間的降低LDL水平的益處[20]。這兩項進展均突顯了透過選擇正確的LDL降低時間和強度來預防ASCVD事件的潛力,以減緩動脈粥樣硬化進展,使其累積的LDL暴露量和相應的累積斑塊負荷低於急性心血管事件(ACVE)發生的閾值。
本文描述了支援累積暴露假說的生物學和臨床證據,併為測量LDL-C的累積暴露以及將其作為治療靶點提供了理論基礎。
01
脂質、脂蛋白和動脈粥樣硬化的生物學
儘管累積暴露假說適用於所有含APOB100的脂蛋白,但我們關注的是LDL,因為在大多數情況下,含APOB的脂蛋白在其生命週期的90%中都是LDL顆粒。因此,90%的迴圈中含APOB的脂蛋白是LDL顆粒。
在臨床實踐中,迴圈LDL顆粒的濃度可以直接測量或透過測量血漿LDL-C來估計,LDL-C是LDL顆粒攜帶的總膽固醇含量的估計值[21-23]。所有直徑<90nm的含APOB的脂蛋白都可以透過轉胞作用的主動過程自由穿過內皮屏障[24-25]
儘管這些脂蛋白中的絕大多數透過胞吐或淋巴系統返回迴圈,但一小部分透過附著蛋白多糖而被困在動脈壁內[26-28]。LDL和其他含APOB的脂蛋白被困在動脈壁內,隨後其膽固醇含量被呈遞給巨噬細胞,導致一系列炎症事件,這對動脈粥樣硬化斑塊形成的起始和進展都是必要的[29-33]
隨著時間的推移,越來越多的脂蛋白被沉積在動脈壁內,積聚的斑塊體積逐漸增大[34]。隨著動脈粥樣硬化斑塊的擴大,它們會變得不穩定和紊亂,導致區域性區域迅速擴大。因此,動脈粥樣硬化的自然史的特徵是斑塊負荷逐漸增大,並伴有離散的快速局灶性生長。
身體對動脈粥樣硬化斑塊破裂的反應是形成血栓來密封斑塊破裂並促進癒合。急性ASCVD事件,包括心肌梗死(MI)和缺血性卒中,發生在動脈粥樣硬化斑塊破裂上的血栓堵塞動脈血流,導致不可逆的缺血性損傷時[34-37]
02
LDL累積暴露
對動脈粥樣硬化生物學的理解促使了LDL累積暴露假說的形成,該假說指出,累積斑塊負荷的大小、斑塊進展和個體在任何時間點發生ACVE的相應絕對風險由其累積LDL決定[10-11](圖1)。這一假設解釋了隨著動脈粥樣硬化斑塊的積累,急性ASCVD事件的風險如何增加[10,23,38-48]。動脈粥樣硬化在早期和中期有一個漫長的無症狀期,此時迴圈的LDL顆粒逐漸被困在動脈壁內,積聚的斑塊負荷的大小緩慢增加。
在此期間,不斷增長的動脈粥樣硬化斑塊的大小保持適度。因此,即使斑塊的區域性區域變得不穩定和破裂,發生ACVE的風險也很低,因為形成的血栓不太可能阻斷透過血管的血流。然而,當達到一定的LDL累積暴露閾值時,足夠的脂蛋白被困在動脈壁內,使累積的動脈粥樣硬化斑塊足夠大,如果區域性區域變得不穩定並被破壞,上覆的血栓可能會堵塞血管,導致急性ASCVD事件[47-49]
隨著更多的LDL顆粒繼續被困在動脈壁內,斑塊體積繼續逐漸增大並富含脂質,發生ACVE的風險迅速增加[37]。事實上,在個體超過與心血管事件(CVE)開始發生時的累積斑塊負荷大小相對應的累積LDL暴露閾值後,發生ACVE的風險會隨著時間的推移呈對數增加,因為覆蓋在破裂斑塊上的血栓會阻礙動脈血流從而導致ACVE,其機率與破裂斑塊體積成正比[40-52]
LDL累積暴露假說的主要臨床意義是,透過減少LDL的累積暴露來減緩動脈粥樣硬化的進展,可以有效預防ASCVD事件[53-55]。隨著時間的推移,保持低對風險。事實上,有人提出,從生命早期開始減少LDL的累積暴露,可以減緩動脈粥樣硬化的進展,從而將ACVE的發作推遲到生命的晚期,這可能會使ASCVD事件變得罕見(或至少不常見)[19]
圖1 LDL-C水平對斑塊負荷和相應動脈粥樣硬化CVE絕對風險的累積影響。
注:將個體隨時間測量的LDL-C水平相加,得出以斑塊年(mmol/l或mg/dl)測量的LDL累積暴露量。LDL的累積暴露反映了動脈壁隨時間暴露的迴圈脂蛋白的數量,從而決定了被困在動脈內的脂蛋白數量,這反過來又決定了累積斑塊負荷的大小和在任何時間點發生重大不良心血管事件(MACE)的絕對風險。a部分顯示了假設的LDL累積暴露量、累積斑塊負荷的大小以及血漿LDL-C水平高的個體在任何年齡發生MACE的相應絕對風險。b部分顯示了低血漿LDL-C水平個體的相同資訊。與LDL-C水平較高的個體相比,血漿LDL-C水平較低會導致更少的LDL顆粒被困在動脈壁內,斑塊進展較慢,累積斑塊負荷較小,所有年齡段的MACE風險較低。彎曲的箭頭表示脂蛋白穿過內皮屏障的轉胞吞作用。
0

3

LDL累積效應的證據
多條證據支援LDL對ASCVD進展的累積效應。許多實驗研究表明,透過轉胞作用穿過內皮屏障的LDL顆粒濃度與LDL-C的血漿濃度成正比[25]。因此,隨著時間的推移,流過內皮屏障並被困在動脈壁內的脂蛋白數量應與LDL的累積暴露量成正比。此外,對因非心血管原因死亡的青少年和年輕人的屍檢研究通常表明,脂蛋白在動脈壁內積聚,表現為脂肪條紋和早期動脈粥樣硬化病變,這些富含脂質病變的大小和複雜性似乎隨著年齡的增長而增加。這些發現證實了這樣一種假設,即LDL和其他含APOB的脂蛋白在動脈壁內的捕獲始於生命的早期,並且由此產生的動脈粥樣硬化斑塊出現在ACVE發生之前,隨著時間的推移逐漸擴大並變得更加複雜。
此外,非侵入性成像研究表明,在>40歲人群中,隨著年齡增長,可檢測到動脈粥樣硬化斑塊的人群比例逐漸增加。事實上,使用非侵入性成像,40歲時,大約15%的男性可以檢測到冠狀動脈粥樣硬化,50歲時30%的男性可以檢測到,60歲時65%的男性可以檢到,70歲時檢出比例可達到80%。女性患動脈粥樣硬化斑塊的分佈與男性相同,但與男性相比或推遲大約十年後才出現,巧合的是ASCVD事件在女性中也大約十年後才發生[61]。這些影像學研究提供了直接證據,表明隨著越來越多的脂蛋白被困在動脈壁內,個體的動脈粥樣硬化斑塊負擔會隨著時間的推移而緩慢進展,以應對LDL累積暴露的增加。
然而,也許最令人信服的證據來自大自然。從出生起,純合子家族性高膽固醇血癥(FH)患者的LDL-C水平就極高,從生命早期開始,LDL的累積暴露量急劇增加[62]。因此,他們會發展為早期和侵襲性動脈粥樣硬化,在兒童和青年時期ASCVD事件的發生率很高[63-65]。相比之下,雜合子FH患者從出生起的迴圈LDL-C水平就沒有那麼極端,但仍然顯著升高[63-65]。這些患者從成年早期到中期便暴露於非常高的LDL累積水平,與沒有FH的年齡匹配個體相比,ACVE的發生率非常高。這些觀察結果強烈支援累積暴露假說,併為LDL累積暴露與斑塊負荷大小和ACVE風險之間的劑量反應關係提供了有力證據。
事實上,長期以來,LDL累積暴露的概念一直被用來描述FH患者的自然病史,併為其預後和治療提供資訊[63-65]。大多數臨床實踐指南建議,即使在沒有隨機試驗證據的情況下,對於FH患者或因血漿LDL-C水平>5 mmol/l(190 mg/dl)而推測為FH的患者,也應儘早開始治療以降低LDL-C水平,並將其降至儘可能低的水平,因為這些患者被認為具有極高的終生ASCVD事件風險,這是由非常高的累積終生LDL暴露引起的。
04
減少LDL累積暴露的益處
許多血管內超聲(IVUS)研究評估了透過上調LDL受體以降低迴圈LDL顆粒濃度來降低LDL-C水平的治療方法[66-68]。這些研究一致表明,降低LDL水平可以減緩動脈粥樣硬化進展,其程度與LDL-C水平的絕對降低成正比,並表明透過將迴圈LDL水平降低到一定閾值以下,可以潛在地阻止斑塊進展。
此外,孟德爾隨機化研究證明,隨著時間的推移,保持較低水平的LDL-C可以大大降低CVE的終生風險[69-70]。與沒有這些遺傳變異的個體相比,具有導致LDL-C水平較低的遺傳變異的個人在所有年齡段的LDL-C累積終生暴露量較低,ASCVD事件的終生風險也相應較低[10,18,71-73]。對於所有降低LDL水平(或一般含APOB的脂蛋白水平)的遺傳變異,包括編碼各種降脂治療靶點的基因變異[18,71-73],觀察到的LDL-C水平降低的心血管風險降低幾乎相同。這一發現表明,在這些孟德爾隨機化研究中觀察到的CVE風險降低是由LDL和其他含APOB脂蛋白的迴圈水平較低引起的,而不是由這些脂蛋白攜帶的特定遺傳變異或膽固醇或甘油三酯含量引起的[10,18,73]。這些發現強化了這樣一個概念,即減緩動脈粥樣硬化進展和降低ASCVD事件風險的是LDL的較低累積暴露量,而不是LDL攜帶的膽固醇含量(LDL-C)的較低累計暴露量。
此外,孟德爾隨機化研究表明,與在生命後期(平均年齡65歲)開始評估LDL-C增強療法的隨機試驗中觀察到的事件減少相比,在LDL-C水平降低的情況下,終身接觸LDL的程度較低與CVE風險降低2~3倍有關[10,12,17-18]。這一發現透過證明降低LDL-C水平的益處取決於降低的幅度和持續時間,為累積暴露不足提供了進一步的支援。重要的是,孟德爾隨機化研究的結果得到了現實世界證據的支援。例如,來自偏遠和農村社群的個體,如果他們食用自給性飲食,一生中LDL-C水平都很低,患ASCVD的終生風險也很低[74-77]
患有FH的年輕人從兒童時期開始接受他汀類藥物治療以降低LDL-C水平,其CVE的風險明顯低於78~81歲未接受治療的患有家族性高膽固醇血癥的父母。這些研究中觀察到的風險降低幅度遠大於觀察到的LDL-C降低的預期,從而直接支援了孟德爾隨機化研究的證據。事實上,有明確的證據表明,降低LDL-C水平的益處隨著LDL-C降低的時間延長而增加。在隨機試驗中,透過使用他汀類藥物抑制羥甲基戊二醯輔酶a還原酶或透過使用單克隆抗體抑制前蛋白轉化酶枯草桿菌蛋白酶9型(PCSK9)來降低LDL-C水平,在治療的第一年和第二年分別將主要不良心血管事件(MACE)風險降低了10%和20%,因此,在治療2年後,他汀類藥物和PCSK9抑制劑每降低1mmol/L的LDL-C水平,都將MACE的風險降低15%[12-13,81-84]。在他汀類三聯療法中,治療3年後,LDL-C水平每降低1mmol/L,這一益處增加到18%,4年後增加到20%,5年後減少到22%[12-13,82-86]。此外,有令人信服的證據表明,降低LDL-C水平的臨床益處隨著治療時間的延長而持續增加,遠遠超過隨機試驗中觀察到的LDL-C降低持續時間。
2017年,歐洲動脈粥樣硬化學會總結了LDL對ASCVD事件風險的因果關係的全部證據[10]。該總結包括200多項研究,這些研究共招募了200多萬名CVE超過20萬起、隨訪時間超過2 000萬人年的參與者。分析顯示,較低的LDL-C水平與較低的ASCVD事件風險之間存在一致的、劑量依賴性的、對數線性關聯。此外,觀察到的益處幅度隨著LDL暴露時間的延長而逐漸增加,從隨機試驗中隨訪5年後LDL-C水平每降低1 mmol/L,主要冠狀動脈事件風險降低22%,到前瞻性觀察佇列研究中隨訪15年後風險降低33%,到孟德爾隨機化研究中觀察到終身暴露於較低LDL-C的風險降低50~55%。
專家簡介
鄭剛 教授
•現任泰達國際心血管病醫院特聘專家,濟興醫院副院長
•中國高血壓聯盟理事,中國心力衰竭學會委員,中國老年醫學會高血壓分會天津工作組副組長、中國醫療保健國際交流促進會高血壓分會委員。天津醫學會心血管病專業委員會委員,天津醫學會老年病專業委員會常委。天津市醫師協會高血壓專業委員會常委,天津市醫師協會老年病專業委員會委員,天津市醫師協會心力衰竭專業委員,天津市醫師協會心血管內科醫師分會雙心專業委員會委員。天津市心臟學會理事、天津市心律學會第一屆委員會委員,天津市房顫中心聯盟常委。天津市醫藥學專家協會第一屆心血管專業委員會委員,天津市藥理學會臨床心血管藥理專業委員會常委。天津市中西醫結合學會心血管疾病專業委員會常委
•《中華老年心腦血管病雜誌》編委,《中華臨床 醫師雜誌》(電子版)特邀審稿專家,《中華診斷學電子雜誌》審稿專家,《華夏醫學》雜誌副主編,《中國心血管雜誌》常務編委,《中國心血管病研究》雜誌第四屆編委,《世界臨床藥物》雜誌編委、《醫學綜述》雜誌會編委、《中國醫藥導報》雜誌編委、《中國現代醫生》雜誌編委、《心血管外科雜誌(電子版)》審稿專家
•本人在專業期刊和心血管網發表文章948篇其中第一作者759篇,參加著書11部
•獲天津市2005年度“五一勞動獎章和獎狀” 和 “天津市衛生行業第二屆人民滿意的好醫生”稱號
參考文獻:
1. Khan, M. A. et al. Global epidemiology of ischemic heart disease: results from the Global Burden of Disease Study. Cureus 12, e9349 (2020).
2. Marchand, F. Ueber atherosclerosis. Verhandlungen der Kongresse fuer Innere Medizin. 21 Kongresse (1904).
3. Ignatowski, A. I. Ueber die Wirkung der tierschen Einweisse auf der Aorta. Virchows Arch. Pathol. Anat. 198, 248 (1909).
4. Windaus, A. Ueber der Gehalt normaler und atheromatoser Aorten an Cholesterol und Cholesterinester. Z. Physiol. Chem. 67, 174 (1910).
5. Anitschkow, N. & Chalatow, S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Zentrbl Allg. Pathol. Pathol. Anat. 24, 1–9 (1913).
6. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986).
7. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015).
8. Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 15, 551–561 (1995).
9.Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).
10. Ference, B. A. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 38, 2459–2472 (2017).
11. Ference, B. A., Graham, I., Tokgozoglu, L. & Catapano, A. L. Impact of lipids on cardiovascular health: JACC Health Promotion Series. J. Am. Coll. Cardiol. 72, 1141–1156 (2018).
12. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).
13. Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010). 1
4. Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).
15. Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).
16. Nicholls, S. J. et al. Effect of two intensive statin regimens on progression of coronary disease. N. Engl. J. Med. 365, 2078–2087 (2011).
17. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).
18. Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).
19. Braunwald, E. How to live to 100 before developing clinical coronary artery disease: a suggestion. Eur. Heart J. 43, 249–250 (2021).
20. Ference, B. A., Ference, T. B., Catapano, A. L., Nicholls, S. J. & Ray, K. K. A naturally randomized trial evaluating a vaccine-like strategy to lower LDL by inhibiting PCSK9 on the lifetime risk of major cardiovascular events (NATURE-PCSK9). Preprint at Medrxiv https://doi.org/10.1101/2024.06.30.24309740 (2024).
21. Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).
22. Sniderman, A. D. et al. Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol. 4, 1287–1295 (2019).
23. Ference, B. A., Kastelein, J. J. P. & Catapano, A. L. Lipids and lipoproteins in 2020. JAMA 324, 595–596 (2020).
24. Stender, S. & Zilversmit, D. B. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx. Arteriosclerosis 1, 38–49 (1981).
25. Zanoni, P., Velagapudi, S., Yalcinkaya, M., Rohrer, L. & von Eckardstein, A. Endocytosis of lipoproteins. Atherosclerosis 275, 273–295 (2018).
26. Camejo, G., Lalaguna, F., Lopez, F. & Starosta, R. Characterization and properties of a lipoprotein-complexing proteoglycan from human aorta. Atherosclerosis 35, 307–320 (1980).
27. Camejo, G., Hurt-Camejo, E., Wiklund, O. & Bondjers, G. Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139, 205–222 (1998).
28. Boren, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).
29. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002). 30. Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).
31. Tabas, I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002).
32. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).
33. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).
34. Ambrose, J. A. et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12, 56–62 (1988).
35. Herrick, J. B. Thrombosis of the coronary arteries. JAMA 72, 387–390 (1919).
36. Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).
37. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).
38. Alderman, E. L. et al. Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J. Am. Coll. Cardiol. 22, 1141–1154 (1993).
39. Emond, M. et al. Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 90, 2645–2657 (1994).
40. Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452–1462 (2020).
41. Newman, W. P. III et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. the Bogalusa Heart Study. N. Engl. J. Med. 314, 138–144 (1986).
42. Berenson, G. S. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338, 1650–1656 (1998).
43. Strong, J. P. et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281, 727–735 (1999).
44. Fernandez-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation 131, 2104–2113 (2015).
45. Tuzcu, E. M. et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: evidence from intravascular ultrasound. Circulation 103, 2705–2710 (2001).
46. Pletcher, M. J. et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann. Intern. Med. 153, 137–146 (2010).
47. Fernandez-Friera, L. et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol. 70, 2979–2991 (2017).
48. Glaser, R. et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 111, 143–149 (2005).
49. Maddox, T. M. et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA 312, 1754–1763 (2014).
50. Arbab-Zadeh, A. & Fuster, V. From detecting the vulnerable plaque to managing the vulnerable patient: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1582–1593 (2019).
51. Burke, A. P. et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103, 934–940 (2001).
52. Virmani, R., Burke, A. P., Farb, A. & Kolodgie, F. D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 47, C13–C18 (2006).
53. Ference, B. A. & Mahajan, N. The role of early LDL lowering to prevent the onset of atherosclerotic disease. Curr. Atheroscler. Rep. 15, 312 (2013).
54. Robinson, J. G. et al. Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life. J. Am. Heart Assoc. 7, e009778 (2018).
55. Sniderman, A. D., Toth, P. P., Thanassoulis, G., Pencina, M. J. & Furberg, C. D. Taking a longer term view of cardiovascular risk: the causal exposure paradigm. BMJ 348, g3047 (2014).
56. McNamara, J. J., Molot, M. A., Stremple, J. F. & Cutting, R. T. Coronary artery disease in combat casualties in Vietnam. JAMA 216, 1185–1187 (1971).
57. McClelland, R. L., Chung, H., Detrano, R., Post, W. & Kronmal, R. A. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 113, 30–37 (2006).
58. Javaid, A. et al. Distribution of coronary artery calcium by age, sex, and race among patients 30-45 years old. J. Am. Coll. Cardiol. 79, 1873–1886 (2022).
59. Hartiala, O. et al. Life-course risk factor levels and coronary artery calcification. The Cardiovascular Risk in Young Finns Study. Int. J. Cardiol. 225, 23–29 (2016).
60. Bergstrom, G. et al. Prevalence of subclinical coronary artery atherosclerosis in the general population. Circulation 144, 916–929 (2021).
61. Gordon, T., Kannel, W. B., Hjortland, M. C. & McNamara, P. M. Menopause and coronary heart disease. The Framingham Study. Ann. Intern. Med. 89, 157–161 (1978).
62. Müller, C. Xanthomata, hypercholesterolemia, angina pectoris. Acta Med. Scand. 95, 75–84 (1938).
63. Wilkinson, C. F., Hand, E. A. & Fliegelman, M. T. Essential familial hypercholesterolemia. Ann. Intern. Med. 29, 671–686 (1948).
64. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490 (2013).
65. Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).
66. Nissen, S. E. et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).
67. Nicholls, S. J. et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA 316, 2373–2384 (2016).
68. Nicholls, S. J. et al. Effect of evolocumab on coronary plaque composition. J. Am. Coll. Cardiol. 72, 2012–2021 (2018).
69. Ference, B. A. Mendelian randomization studies: using naturally randomized genetic data to fill evidence gaps. Curr. Opin. Lipidol. 26, 566–571 (2015).
70. Hingorani, A. & Humphries, S. Nature’s randomised trials. Lancet 366, 1906–1908 (2005).
71. Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).
72. Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol. 65, 1552–1561 (2015).
73. Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364–373 (2019).
74. Whyte, H. M. & Yee, I. L. Serum cholesterol levels of Australians and natives of New Guinea from birth to adulthood. Australas. Ann. Med. 7, 336–339 (1958).
75. Mendez, J., Tejada, C. & Flores, M. Serum lipid levels among rural Guatemalan Indians. Am. J. Clin. Nutr. 10, 403–409 (1962).
76. O’Keefe, J. H. Jr, Cordain, L., Harris, W. H., Moe, R. M. & Vogel, R. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J. Am. Coll. Cardiol. 43, 2142–2146 (2004).
77. Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).
78. Luirink, I. K. et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N. Engl. J. Med. 381, 1547–1556 (2019).
79. Wiegman, A. et al. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA 292, 331–337 (2004).
80. Kusters, D. M. et al. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA 312, 1055–1057 (2014).
81. Wiegman, A. et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).
82. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).
83. O’Donoghue, M. L. et al. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease. Circulation 146, 1109–1119 (2022).
84. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).
85. Ference, B. A. et al. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur. Heart J. 39, 2540–2545 (2018).
86. Galimberti, F., Sniderman, A. D., Catapano, A. L. & Ference, B. A. Meta-analysis of randomized controlled trials evaluating the association between magnitude and duration of apolipoprotein-B lowering and cardiovascular risk reduction among different lipid-lowering therapies. Atherosclerosis 379 (Suppl. 1), S41 (2023).
醫脈通是專業的線上醫生平臺,“感知世界醫學脈搏,助力中國臨床決策”是平臺的使命。醫脈通旗下擁有「臨床指南」「用藥參考」「醫學文獻王」「醫知源」「e研通」「e脈播」等系列產品,全面滿足醫學工作者臨床決策、獲取新知及提升科研效率等方面的需求。

相關文章