


之後使用兩組距離測度矩陣執行Mantel tests,例如確定樣方之間的群落組成差異是否與樣方之間的溫度差異或樣方之間的物理距離相關,或者說“共變”。這些測試可用於解決環境是針對微生物群落的“選擇”,還是存在強烈的距離衰減模式,表明存在擴散限制。這些通常是生物地理學研究中的重要問題。
本篇同樣以群落分析為例,簡介R包vegan的Mantel tests。
假設存在如下資料集。第1列是樣方名稱,第2-5列為各樣方中的環境引數(即鹽度、溫度等),第6-7列為各樣方的緯度和經度,第8列及之後為各樣方中的物種及其丰度。我們期望透過Mantel tests,檢視對於該資料集,作用於物種變化的最主要因素,是由環境引起的“選擇”,還是由地理因素的擴散限制所致。

載入R包,如上所述,首先計算兩組樣方距離測度,然後執行Mantel tests。
library(vegan)
#讀取上述資料集
df <- read.csv('Your_OTU_table.csv', header= TRUE)
##計算距離
#根據物種丰度資料,計算樣方間的 Bray-curtis 距離
abund <- df[ ,8:ncol(df)]
dist.abund <- vegdist(abund, method = 'bray')
#根據環境測量指標,計算樣方間的歐幾里得距離
#這裡只選擇了其中的溫度指標,期望關注物種變化與溫度的相關性
temp <- df$Temperature
dist.temp <- dist(temp, method = 'euclidean')
#如果期望關注多種環境的協同作用,就選擇一個環境子集,計算樣方間的歐幾里得距離
#例如使用 4 種環境資料,但此時需要執行資料標準化,以消除量綱差異
env <- df[ ,2:5]
scale.env <- scale(env, center = TRUE, scale = TRUE)
dist.env <- dist(scale.env, method = 'euclidean')
#根據經緯度,計算樣方間實際的地理距離
geo <- data.frame(df$Longitude, df$Latitude)
d.geo <- distm(geo, fun = distHaversine) #library(geosphere)
dist.geo <- as.dist(d.geo)
##執行 Mantel tests,詳情 ?mantel,以下為 3 個示例
#物種丰度和溫度的相關性,以 spearman 相關係數為例,9999 次置換檢驗顯著性(Mantel tests 基於隨機置換的方法獲取 p 值)
abund_temp <- mantel(dist.abund, dist.temp, method = 'spearman', permutations = 9999, na.rm = TRUE)
abund_temp
#物種丰度和地理距離的相關性,以 spearman 相關係數為例,9999 次置換檢驗顯著性
abund_geo <- mantel(dist.abund, dist.geo, method = 'spearman', permutations = 9999, na.rm = TRUE)
abund_geo
#物種丰度和 4 種環境組合的相關性,以 spearman 相關係數為例,9999 次置換檢驗顯著性
abund_env <- mantel(dist.abund, dist.env, method = 'spearman', permutations = 9999, na.rm = TRUE)
abund_env
基於物種丰度的距離矩陣與基於溫度指標的距離矩陣之間有很強的相關性(Mantel statistic R: 0.667,p value = 1e-04)。換句話說,隨著樣方在溫度方面的差異逐漸增大,它們在物種組成方面的差異也越來越大。
#物種丰度和溫度的相關性
> abund_temp
Mantel statistic based on Spearman's rank correlation rho
Call:
mantel(xdis = dist.abund, ydis = dist.temp, method = "spearman", permutations = 9999, na.rm = TRUE)
Mantel statistic r: 0.677
Significance: 1e-04
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.148 0.198 0.246 0.290
Permutation: free
Number of permutations: 9999
基於物種丰度的距離矩陣與樣方間的地理距離沒有顯著關係(Mantel statistic R: 0.138,p value = 0.052)。因此可知,對於該測試資料集,不存在物種丰度的距離衰減效應。
#物種丰度和地理距離的相關性
> abund_geo
Mantel statistic based on Spearman's rank correlation rho
Call:
mantel(xdis = dist.abund, ydis = dist.geo, method = "spearman", permutations = 9999, na.rm = TRUE)
Mantel statistic r: 0.1379
Significance: 0.0525
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.107 0.140 0.170 0.204
Permutation: free
Number of permutations: 9999
同時對於4種環境變數組合,累積的環境因素與群落物種組成高度相關(Mantel statistic r: 0.686, p value = 1e-04)。
#物種丰度和 4 種環境組合的相關性
> abund_env
Call:
mantel(xdis = dist.abund, ydis = dist.env, method = "spearman", permutations = 9999, na.rm = TRUE)
Mantel statistic r: 0.6858
Significance: 1e-04
Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.151 0.201 0.244 0.292
Permutation: free
Number of permutations: 9999
綜上結論,對於該資料集,與地理距離相比,群落物種組成與環境引數的相關性更強。因此在該系統中,主要發生環境對群落作出的“選擇”,地理因素的擴散限制相對微弱。
最後不妨作圖觀測變數間的關係,加深對這種相關性的理解。
library(ggplot2)
#某物種與溫度的相關性,橫軸溫度,縱軸物種丰度,顏色表示樣方的緯度
xx = ggplot(df, aes(x = Temperature, y = Pelagibacteraceae.OTU_307744)) +
geom_smooth(method = 'lm', alpha = 0.2, colour = 'black') +
geom_point(aes(colour = Latitude), size = 4) +
labs(y = 'Pelagibacteraceae (OTU 307744) (%)', x = 'Temperature (C)') +
theme( axis.text.x = element_text(face = 'bold',colour = 'black', size = 12),
axis.text.y = element_text(face = 'bold', size = 11, colour = 'black'),
axis.title= element_text(face = 'bold', size = 14, colour = 'black'),
panel.background = element_blank(),
panel.border = element_rect(fill = NA, colour = 'black'),
legend.title = element_text(size =12, face = 'bold', colour = 'black'),
legend.text = element_text(size = 10, face = 'bold', colour = 'black')) +
scale_colour_continuous(high = 'navy', low = 'salmon')
xx

#對於圖中的線性迴歸
fit <- lm(df$Temperature~df$Pelagibacteraceae.OTU_307744)
summary(fit)
Call:
lm(formula = df$Temperature ~ df$Pelagibacteraceae.OTU_307744)
Residuals:
Min 1Q Median 3Q Max
-2.2053 -0.9336 -0.5215 0.5028 3.8232
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4082 0.4476 0.912 0.372
df$Pelagibacteraceae.OTU_307744 1.3008 0.1280 10.165 1.45e-09 ***
—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.634 on 21 degrees of freedom
Multiple R-squared: 0.8311, Adjusted R-squared: 0.823
F-statistic: 103.3 on 1 and 21 DF, p-value: 1.454e-09
#分面圖展示多組變數的相關性,橫軸溫度,縱軸為多個物種的丰度,顏色表示樣方的緯度
library(reshape2)
otus <- df[ ,1:11]
otus_melt <- melt(otus, id = c('Station', 'Salinity', 'Temperature', 'Oxygen', 'Nitrate', 'Latitude', 'Longitude'))
xx <- ggplot(otus_melt, aes(x = Temperature, y = value)) +
facet_wrap(.~variable, scales = 'free_y') +
geom_smooth(method = 'lm', alpha = 0.2, colour = 'black') +
geom_point(aes(colour = Latitude), size = 4) +
labs(y = 'Relative Abundance (%)', x = 'Temperature (C)') +
theme( axis.text.x = element_text(face = 'bold',colour = 'black', size = 12),
axis.text.y = element_text(face = 'bold', size = 10, colour = 'black'),
axis.title= element_text(face = 'bold', size = 14, colour = 'black'),
panel.background = element_blank(),
panel.border = element_rect(fill = NA, colour = 'black'),
legend.title = element_text(size =12, face = 'bold', colour = 'black'),
legend.text = element_text(size = 10, face = 'bold', colour = 'black'),
legend.position = 'top', strip.background = element_rect(fill = 'grey90', colour = 'black'),
strip.text = element_text(size = 9, face = 'bold')) +
scale_colour_continuous(high = 'navy', low = 'salmon')
xx

上述主要展示的變數間相關性的散點圖。
接下來是對於距離測度間的相關性。
#將上文獲得的距離測度,轉化為資料框,一一對應起來
aa <- as.vector(dist.abund)
tt <- as.vector(dist.temp)
gg <- as.vector(dist.geo)
mat <- data.frame(aa, tt, gg)
#基於物種丰度的距離與基於溫度指標的距離之間的相關性散點圖,上文已知二者顯著相關;同時顏色表示樣方間地理距離
mm <- ggplot(mat, aes(y = aa, x = tt)) +
geom_point(size = 4, alpha = 0.75, colour = "black",shape = 21, aes(fill = gg/1000)) +
geom_smooth(method = "lm", colour = "black", alpha = 0.2) +
labs(x = "Difference in Temperature (C)", y = "Bray-Curtis Dissimilarity", fill = "Physical Separation (km)") +
theme( axis.text.x = element_text(face = "bold",colour = "black", size = 12),
axis.text.y = element_text(face = "bold", size = 11, colour = "black"),
axis.title= element_text(face = "bold", size = 14, colour = "black"),
panel.background = element_blank(),
panel.border = element_rect(fill = NA, colour = "black"),
legend.position = "top",
legend.text = element_text(size = 10, face = "bold"),
legend.title = element_text(size = 11, face = "bold")) +
scale_fill_continuous(high = "navy", low = "skyblue")
mm
#基於物種丰度的距離與樣方間地理距離之間的相關性散點圖,上文已知二者無相關性
mm <- ggplot(mat, aes(y = aa, x = gg/1000)) +
geom_point(size = 3, alpha = 0.5) +
labs(x = "Physical separation (km)", y = "Bray-Curtis Dissimilarity") +
theme( axis.text.x = element_text(face = "bold",colour = "black", size = 12),
axis.text.y = element_text(face = "bold", size = 11, colour = "black"),
axis.title= element_text(face = "bold", size = 14, colour = "black"),
panel.background = element_blank(),
panel.border = element_rect(fill = NA, colour = "black"))
mm




